Global Error Bounds for Systems of Convex Polynomials over Polyhedral Constraints

نویسنده

  • Huynh van Ngai
چکیده

This paper is devoted to study the Lipschitzian/Holderian type global error bound for systems of many finitely convex polynomial inequalities over a polyhedral constraint. Firstly, for systems of this type, we show that under a suitable asymtotic qualification condition, the Lipschitzian type global error bound property is equivalent to the Abadie qualification condition, in particular, the Lipschitzian type global error bound is satisfied under the Slater condition. Secondly, without regularity conditions, the Hölderian global error bound with an implicit exponent is invertigated. Mathematics Subject Classification: 49J52, 49J53, 90C30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error bounds for monomial convexification in polynomial optimization

Convex hulls of monomials have been widely studied in the literature, and monomial convexifications are implemented in global optimization software for relaxing polynomials. However, there has been no study of the error in the global optimum from such approaches. We give bounds on the worst-case error for convexifying a monomial over subsets of [0, 1]. This implies additive error bounds for rel...

متن کامل

Global convergence of an inexact interior-point method for convex quadratic‎ ‎symmetric cone programming‎

‎In this paper‎, ‎we propose a feasible interior-point method for‎ ‎convex quadratic programming over symmetric cones‎. ‎The proposed algorithm relaxes the‎ ‎accuracy requirements in the solution of the Newton equation system‎, ‎by using an inexact Newton direction‎. ‎Furthermore‎, ‎we obtain an‎ ‎acceptable level of error in the inexact algorithm on convex‎ ‎quadratic symmetric cone programmin...

متن کامل

Finding Bounds on Ehrhart Quasi-Polynomials

Numerous problems in program analysis, can be reduced to finding bounds on the number of integer points in a convex set, or the solution of a more general polyhedral counting problem. For a large class of applications the solution of such a counting problem can be expressed as a piecewise Ehrhart quasi-polynomial in the parameters. This work presentsmethods to find bounds on quasi-polynomials o...

متن کامل

Global error bounds for piecewise convex polynomials

In this paper, by examining the recession properties of convex polynomials, we provide a necessary and sufficient condition for a piecewise convex polynomial to have a Hölder-type global error bound with an explicit Hölder exponent. Our result extends the corresponding results of [25] from piecewise convex quadratic functions to piecewise convex polynomials.

متن کامل

Solving singular integral equations by using orthogonal polynomials

In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015